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Abstract 
The purpose of this two-year project has been to address the need for a sound, quantitative basis for 
assessing the quality of fingerprint images. Latent prints, in particular, can be problematic because they 
are often partial, smudged, and otherwise distorted. Prints of sufficiently high quality routinely allow for 
identification (i.e., originates from one known source) or exclusion (i.e., could not have originated from a 
reference source). However, image quality problems related to identifiable Level 1, 2, or 3 details can be 
a major source of uncertainty and potential error, or may contribute to a (sometimes incorrect) 
determination of no conclusion.  An ability to assess fingerprint image quality therefore represents a 
crucial step in reaching correct determinations. 
 
The high-level goal of this cross-disciplinary collaboration has been to derive a scientific foundation for 
measurement of fingerprint image quality, particularly for latent prints. The objectives of this effort have 
been the following: to make a significant contribution to increasing accuracy, reliability, repeatability, 
verification, defensibility, and uniform assessment of fingerprint pattern analysis and practice; to provide 
a demonstrable and defensible basis for engagement of the relevant practitioner and stakeholder 
communities to incorporate and accept standards into friction ridge pattern analysis, reporting, and use; to 
provide for substantial improvements to training, proficiency testing, quality assurance, and control 
(quality management) that are more consistent across the forensic science community;  to incorporate 
metrics that can be documented into the ACE-V or other accepted friction ridge examination methods; to 
provide the foundation for the development of novel technology aids for human examiners to automate 
fingerprint pattern image quality determinations; and to provide the basis for image quality determination 
(accept-reject) that also can be applied with automated fingerprint systems at the point of capture. 
 
The work has been motivated in part by the Daubert ruling (Daubert v. Merrell Dow Pharmaceuticals, 
1993), as well as by conclusions drawn in the subsequent study by the National Academy of Sciences, 
Strengthening Forensic Science in the United States: a Path Forward (2009).  It is reasonable to expect 
scientific validity when using friction-ridge information for identification or exclusion. 
 
The researchers on this project have followed an experimental approach, testing theoretical concepts 
through their application to actual images, and then performing statistical validation of the results when 
possible. Several image databases have been used, containing rolled prints, flat (plain) prints, and latent 
prints. The researchers also have obtained prints in the laboratory, using latent lifting methods as well as a 
dedicated live-scan imaging device. Furthermore, the researchers have digitally altered images of actual 
prints in order to determine drop-off points, that is, thresholds at which an area of friction ridge or feature 
can no longer be reliably used for identification. Metrics to quantify the effect on image quality have been 
developed. From these studies, quantitative thresholds have been established for unbiased selection and 
for use of Level 2 detail, in which both minutia and friction ridges have been incorporated into our 
formulation.  
 
In conclusion, the results obtained have been noteworthy.  First, our hierarchical representation of 
relations among minutia and friction ridges offers a unique and powerful way for fingerprint search and 
comparison.  In addition, it allows for the mining and detection of unique and rare features that can be 
extremely useful when drawing statistical likelihood of a given feature.  We have also been successful in 
developing techniques to enhance the accuracy of extraction of ridges and minutia from a print using 
novel filtering techniques.  We developed parallel implementations of our algorithms on a low-cost 
general purpose graphics processing unit (GPU) and achieved a significant speed-up. Finally, we have 
successfully created a database of synthetic fingerprints.   
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Executive Summary 
 
Fingerprints represent one of the most reliable physiological traits for human identification, and have 
been widely used for more than a century. In particular, latent fingerprint images obtained from crime 
scenes have routinely served as crucial evidence in forensic identification. Unfortunately, images of latent 
prints are often of poor quality, and often represent only a small surface area of a finger’s friction-ridge 
pattern. For a given image, a fingerprint examiner therefore faces the problem of deciding whether 
friction-ridge details are present in sufficient quantity and quality to proceed with an examination, 
comparison, and decision. This problem of sufficiency, of both quantity and quality of fingerprint image 
details, has been the focus of this 2-year research project.  
 
The purpose of this two-year project has been to address the need for a sound, quantitative basis for 
assessing the quality of fingerprint images. Latent prints, in particular, can be problematic because they 
are often partial, smudged, and otherwise distorted. Prints of sufficiently high quality routinely allow for 
identification (i.e., originates from one known source) or exclusion (i.e., could not have originated from a 
reference source). However, image quality problems related to identifiable Level 1, 2, or 3 details can be 
a major source of uncertainty and potential error, or may contribute to a (sometimes incorrect) 
determination of no conclusion.  An ability to assess fingerprint image quality therefore represents a 
crucial step in reaching correct determinations. 
 
The high-level goal of this cross-disciplinary collaboration has been to derive a scientific foundation for 
measurement of fingerprint image quality, particularly for latent prints. The primary objectives of this 
effort have been the following: to make a significant contribution to increasing accuracy, reliability, 
repeatability, verification, defensibility, and uniform assessment of fingerprint pattern analysis and 
practice; to provide a demonstrable and defensible basis for engagement of the relevant practitioner and 
stakeholder communities to incorporate and accept standards into friction ridge pattern analysis, 
reporting, and use; to provide for substantial improvements to training, proficiency testing, quality 
assurance, and control (quality management) that are more consistent across the forensic science 
community;  to incorporate metrics that can be documented into the ACE-V or other accepted friction 
ridge examination methods; to provide the foundation for the development of novel technology aids for 
human examiners to automate fingerprint pattern image quality determinations; and to provide the basis 
for image quality determination (accept-reject) that also can be applied with automated fingerprint 
systems at the point of capture. 
 
The work has been motivated in part by the Daubert ruling (Daubert v. Merrell Dow Pharmaceuticals, 
1993), as well as by conclusions drawn in the subsequent study by the National Academy of Sciences, 
Strengthening Forensic Science in the United States: a Path Forward (2009).  It is reasonable to expect 
scientific validity when using friction-ridge information for identification or exclusion. 
 
The researchers on this project have followed an experimental approach, testing theoretical concepts 
through their application to actual images, and then performing statistical validation of the results when 
possible. Several image databases have been used, containing rolled prints, flat (plain) prints, and latent 
prints.  
 
Of particular note is a set of 117,323 anonymized images from 2575 different individuals, which we 
received on a temporary basis from the FBI’s Criminal Justice Information Services division. These were 
rolled and slap prints, classified as to quality by the FBI as “Good, Bad and Ugly.”  For latent prints, we 
relied heavily on the well-known NIST Special Database 27. We also obtained prints in the laboratory, 
using latent lifting methods as well as a dedicated live-scan imaging device. Furthermore, we have 
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produced a new database of digitally altered images of actual prints that can be used to determine drop-off 
points, or thresholds at which an area of friction ridge or feature can no longer be reliably used for 
identification. Metrics to quantify the effect on image quality have been developed. From these studies, 
quantitative thresholds have been established for unbiased selection and for use of Level 2 detail, in 
which both minutia and friction ridges have been incorporated into our formulation. 
 
Our work has been concentrated in four major areas of activity, and this report is subdivided accordingly: 
1) feature extraction, 2) quality-based image segmentation, 3) distortion modeling and creation of a 
fingerprint image database, and 4) high-speed implementation of feature analysis. 
 
In the area of feature extraction, we developed our own software for extracting minutiae, ridges, and 
“extended feature” representations. In addition to extraction of features, we extended them so that they 
provide quality measures, which we hope will be explored further and serve as a foundation for 
standardization of latent examination. One avenue of study has led to a technique for improved 
localization of minutiae, for example, as compared with previous feature-extraction systems. Using 516 
fingerprints from NIST SD27, our results exhibited an improvement in minutia accuracy for 88.2% of 
fingerprint minutia sets after applying the proposed localization method. An increase in average quality of 
true minutiae was found for 98.6% of the fingerprint images when using a quality assessment technique 
that we proposed.  
 
In a separate effort, we conducted a form of data mining in order to identify new feature types that are 
statistically rare. These features are based on hierarchical groupings of minutia triples, or triangles, and 
are augmented with ridge information. From a relatively small set of 93 images, we found a set of 10 
compound features that are statistically unusual, and therefore exhibit high potential for identification or 
exclusion. An example feature is the following: 

“3 triangles (9 minutiae) such that the total ridge count between all minutia pairs is at least 630, and 
the ridge count for minutia pairs that lie on different triangles is at least 35.” 

Our emphasis was not to identify features that are rare for the general population, but instead to develop a 
procedure for finding such features for any given image database. 
 
Our work in high-speed computing was motivated in part by the long computational runs that were 
required to perform the data mining work. To be valid statistically, exhaustive comparisons are needed for 
all image pairs in a data set, and the computation time per image pair may be several seconds on a typical 
modern laptop. This led to mapping of our code from a standard computer to a General Purpose Graphics 
Processing Unit, often abbreviated as GPGPU or simply GPU. Our implementations have resulted in 
speedups of 7.6 for single-triangle comparisons and 6.5 for two-triangle comparisons, using a set of 25 
images. Our results to date for three-triangle comparisons have shown an average speedup of 12.1 for a 
set of 6 images. Such performance improvements will be very valuable for data mining on large image 
databases. 
 
The topic of image segmentation, for this project, refers to separation of the foreground (fingerprint 
region) from the background of an image. Most segmentation of latent prints is performed manually. 
Traditional automated methods for segmentation are designed for backgrounds with random noise, and 
they perform poorly on structured/textured backgrounds. The result is that many spurious minutiae are 
detected by those systems, thus inhibiting the matching process. We developed a novel approach for 
improving the performance of segmentation in latent prints, with an emphasis on handling structured 
backgrounds.  In our tests, our method reduced the average detected fingerprint area from 60.7% of the 
total image to 33.6% while maintaining the rate of true minutiae in the fingerprint region. In effect, low-
quality portions of the print are being removed from consideration. In a separate test, the rate of true 
minutiae labeled as background was reduced from 1.4% to 0.3% while maintaining the same average 
fingerprint region size in comparison to a traditional segmentation method.  These results were obtained 
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using a database of 258 latent fingerprint images from the NIST SD27 database. A segmentation system 
such as this is potentially a useful aid to human examiners, by directing their efforts to higher-quality 
portions of an image. 
  
We also have worked on distortion modeling and creation of a fingerprint image database. A 
“foreground” image is produced by applying realistic distortions to any given good-quality fingerprint 
image. Parameters for these distortions have been chosen by examining databases of good- and poor-
quality prints, and by conducting experiments with our live-scan system. Separately, a “background” 
image is synthesized, to contain random noise and structured noise (lines and text). The background 
resembles various surfaces on which a latent print can be placed. The foreground image is then merged 
with the background image to simulate the placement of a finger onto a physical surface. 
 
In conclusion, the results of our two-year research effort have been noteworthy. First, we have developed 
a novel hierarchical, triplet-based representation among minutiae and associated friction ridges.  Such a 
representation offers a unique and powerful way for fingerprint search and comparison.  In addition, it 
allows for the mining and detection of unique and rare features that can be extremely useful when 
estimating statistical likelihood of a given print.  For instance, we have identified statistically rare features 
among various prints in a database.  Likewise, given a feature, our method also allows for assessing if the 
feature would be considered rare. We have begun to parallelize the algorithms on a low-cost general 
purpose graphics processing unit (GPU), and significant speedups have been achieved. By parallelizing 
the algorithms, we believe much larger databases can be handled. We also have been successful in 
developing techniques to enhance the accuracy of extraction of ridges and minutia from a print using 
novel filtering techniques.  Finally, we have successfully created databases of synthetic fingerprints.  
These achievements are aligned with our goals and objectives. 
 
This research has led to several implications for policy and practice. First, our experimental work with 
databases and with a live-scan system have allowed us to characterize, in part, the large variations in 
quality that can occur from image capture of friction ridge patterns. Although the statistical work is not 
yet mature, we believe that this empirical approach will lead to improved guidelines for practitioners. As 
currently practiced, the interpretation of friction ridge pattern evidence is based primarily on experience, 
and a large component of the process is subjective. In addition, training can vary substantially from 
laboratory to laboratory. There is no nationwide standardized education and training curriculum. The 
differences in training and experience can result in quite varied interpretations of the same evidence by 
different practitioners, and such differences may impact inculpation and exculpation of suspects and more 
importantly impinge on the tenet of the presumption of innocence. Confounding the interpretation is a 
lack of documentation regarding validation of the processes. Validation is essential for determining the 
limitations of a process or methodology so that practitioners have data to establish guidelines to not 
exceed the bounds of the system when subjectively interpreting evidence.  
 
The interpretation process also is problematic because the quality of the evidence varies substantially, 
ranging from highly informative and resolved to partial, smudged, and distorted. Lastly, the quality and 
quantity criteria for a “print” to meet the sufficiency threshold for interpretation and subsequently for an 
identification are not defined. Although acceptance of latent print evidence has been accepted in the 
Courts, legal admissibility is a poor criterion for scientific quality. We all must accept that there are 
inherent limitations with the current process that need to be improved. These gaps in the system must be 
addressed. 
 
The studies herein address some aspects of image quality problems related to identifiable Level 1, 2, or 3 
details and how such data can be utilized to support the subjective interpretations that to date may not 
have been validated sufficiently. Moreover, the uncertainty and possibility of error that potentially may 
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contribute to some practitioners actions to “push the envelope” may soon be able to be quantified so fact 
finders and triers of fact can be better informed of vagaries, so justice may be better served.  
 
From a policy perspective, our work has laid a foundation for further development, so that sufficiency 
metric(s) can be developed. Based on our results, however, far more effort is required for development of 
a more objective support system for interpretation of friction ridge detail. Although more work is needed, 
the data herein should be considered as part of a more comprehensive training program to promote 
understanding, increasing accuracy and reliability, and more uniform assessment of fingerprint pattern 
analysis and practice. 
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will therefore benefit significantly from clear criteria to indicate that sufficient details are present, in 
sufficient quality, to proceed with an examination, comparison, and decision.   

I.2. Literature citations and review 

The term “sufficiency” refers to the quantity and quality (also called “clarity”) of information in a friction 
ridge pattern that is needed in order to proceed with an analysis and render a conclusion. Sufficiency is 
currently assessed subjectively, according to the training, expertise, and experience of human examiners 
[1-5]. This step occurs very early in the ACE-V methodology [6]. The “value standard” is also subjective 
and has no quantitative experimental basis [7].  It is interesting to note that “standards” themselves in this 
discipline are discussed and formulated in general terms [4, 8] and are not always globally accepted or 
uniformly applied [9]. 
 
Image quality of fingerprints is a major concern in AFIS products. Yet, comprehensive quality control is 
infeasible because most of the techniques used in those products are proprietary and therefore not 
available to the broader community for analysis.  Studies of fingerprint image quality by NIST have 
emphasized minutia-based matching systems [10] and include definition of the well-known NIST 
Fingerprint Image Quality (NFIQ) methodology, which is publicly available.  Lee et al. [11] have 
developed quality index measures specifically for fingerprint images.  Similarly, Fierrez-Aguilar et al. 
[12] have incorporated measures of image quality into automated fingerprint verification systems. 
 
Our early work on friction ridge extraction was heavily influenced by the work described in [13], in 
which grayscale information was used to trace ridges.  Refinements were described in [14, 15].  The use 
of ridge information for matching in automated systems is starting to attract attention [16-18], but with 
varied success.  The common theme to all previous attempts is that they rely on binary skeleton images, 
rather than on grayscale, as described in this report.   
 
Our approach to minutia distributions initially bears similarity to work described in [19-24]. A major 
difference, however, is our incorporation of information from ridges, particularly the ridge direction at 
each minutia.  In fact, the use of extended features for fingerprint analysis has been gaining interest in the 
automated ten-print community [25].  As noted in [26], additional features are needed for effective 
processing of latent images.  A memo released by the Scientific Working Group on Fingerprint Ridge 
Analysis, Study, and Technology (SWGFAST) [27] points to the use of “ridges in sequence” by 
experienced latent examiners, representing important information that is ignored by current AFIS 
techniques.   
 
Distortion is also an important aspect of fingerprint image analysis. Cappelli and Maltoni [28] developed 
a model of elastic skin deformation. Ross et al.[29] proposed a deformable thin-spline model to improve 
the fingerprint matching. Watson et al. [30] designed distortion-tolerant filters to match elastic-distorted 
fingerprints. All of these are 2-D models. 

I.3. Rationale for the research 

Fingerprint information has been used for law enforcement purposes since at least 1893, when the Home 
Ministry Office of the United Kingdom accepted the premise that no two individuals have the same 
friction-ridge patterns [31].  For more than a century, the testimony of human examiners has been used to 
identify (or exclude) individuals based on fingerprint evidence. In 1993, however, the U.S. Supreme 
Court ruled (in Daubert v. Merrell Dow Pharmaceuticals) that a scientific basis is needed for expert 
testimony. The high-level goal of this project has been to develop a scientific foundation for measurement 
of fingerprint image quality, so that a human examiner will be assured that the quality is sufficient to 
proceed with an examination, comparison, and decision.   
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I.4. Personnel 

Several graduate students contributed extensively to the success of this project. A partial list follows, 
shown alphabetically: Kelson Gent, Kevin Hoyle, Nadia Kozievitch, Jonathan Leidig, Lin Tzy Li, 
Supratik Misra, Sung Hee Park, Indira Priyadarshini, and Nathan Short. Undergraduates who participated 
are Shubhangi Deshpande and Sony Vijay. The Principal Investigators gratefully acknowledge their hard 
work. 

II. Methods 
This section describes our work in the areas of 1) feature extraction, 2) quality-based image segmentation, 
3) distortion modeling and creation of a fingerprint image database, and 4) high-speed implementation of 
feature analysis. 

II.1. Feature extraction and analysis 

Our research has emphasized several aspects of feature extraction related to fingerprint images. The areas 
of emphasis have been ridge extraction, minutia localization, minutia quality assessment, and extended 
feature sets based on minutia triplets. Each is discussed separately in this section. 
 
Ridge extraction.  We developed new approaches to extract individual friction ridges from grayscale 
images. Most published methods for this problem rely on binarized images, in which every pixel is either 
completely black or completely white. Our approach, however, analyzes grayscale images directly 
because of the stronger potential to perform quality assessment.  For a typical grayscale image, every 
pixel is represented by a brightness (intensity) value in the range from 0 to 255. 
 
Our approach uses Bayesian techniques to extract ridges [32], motivated by the work of Maio and 
Maltoni [13] and Liu, Huang, and Chan [33]. As illustrated in Figure 2, the algorithm assumes that ridges 
are represented as a set of local maxima in image I, where higher intensity values represent darker shades 
of gray.  For a given point in I, the ridge direction is assumed to be perpendicular to the intensity gradient. 
For efficiency of implementation, a directional flow map based on intensity gradients is computed in 
advance.  The algorithm makes a sequence of steps along each ridge of interest, using the directional flow 
map and a user defined step size of several pixels.  At each step, the center of the ridge is determined by 
searching for a local maximum in the direction orthogonal to the current ridge direction.  To reduce 
susceptibility to noise, Gaussian smoothing and regularization are applied to a linear cross-sectional strip 
that cuts across the ridge.  
 
A problem with previous approaches is illustrated in Figure 3, in which a ridge ending is not detected. We 
found that neither of the previous algorithms  ([13] and [33]) is well equipped to extract ridge segments 
when bifurcations are present. To address this problem, we introduced new criteria for improved minutia 
detection, with the result that ridges are extracted more accurately. We developed a Bayesian approach to 
identifying ridge and valley crossings, using feature vectors of the form መ݂ ൌ ሾ̅ߠ, ,ߣ ߰ሿ , where ̅ߠ 
represents the average direction of intensity gradient for a given image window, ߣ is the length of the 
window, and ߰	 is an adaptive term that is related to the variance of pixel values within the window.  
Wider (and therefore larger) windows tend to reduce sensitivity to noise, but at the expense of accuracy 
for narrow ridges and valleys.   
 
In order to implement the classifier, distribution models were needed for each of the three feature types.  
We obtained the distribution models through parameter estimation using a set of training samples. The 
training samples were collected from several images by manually selecting points near the centers of 
ridge sections.  For each selected point, a data collection system then automatically captured several 
nearby image windows that served as representative cases that a ridge crossing is (or is not) present.   
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The value L is the quality level from the block associated with the localized minutia, and is found using a 
method similar to that of Ratha, Chen, and Jain [41]. The minutia reliability measure R is taken from a 
computed cross-correlation value, using a minimum of 0 to avoid negative values.  Finally, I is taken from 
the number of iterations that were required for the particle filter to converge on a minutia point.  

Specifically, ܫ ൌ
ேିଷ

ெ
, where ܰ  is the number of iterations until convergence and MAX=10 is the 

maximum allowable number of iterations.  It follows that I is equal to 1 for fast convergence (3 iterations) 
and 0 for slow convergence (10 iterations).  The idea is that a slower convergence will result from a large 
variance in location of large correlation scores throughout the region of interest.  It is expected that a high 
quality region would provide a large correlation density around a single point.  
 
Experimental results are given in Section III.1. More technical details are provided in [39]. 
 
Extended feature sets. Most fingerprint matching systems rely primarily on minutiae, which are the 
endings and bifurcations of friction ridges. Minutia-based descriptors are used to compare a probe print to 
a known exemplar. As the surface area of the fingerprint decreases, such as in latent prints, the number of 
minutiae also decreases, leading to lower identification performance. To overcome this problem, 
“extended feature sets” have been proposed to make up for the reduced number of minutiae.  
 
Here, we introduce an additional feature called a ridge component, which is the portion of a friction ridge 
that joins two adjacent minutiae on that ridge. In our implementation, each minutia is assigned an 
additional set of descriptors indicating the ridge components that are directly connected to it. It follows 
that a termination will have exactly one ridge component descriptor, and a bifurcation will have three.   

A ridge connection is a binary indicator between two minutiae; it is true if the minutiae share a common 
ridge component, and it is false otherwise. Using this notion of ridge connections, it is possible to create a 
graph-based representation of the fingerprint, where each minutia represents a node in the graph and a 
ridge connection indicator determines if an edge exists between each node. Looking at all possible sub-
graphs, the ridge clusters, or groups, can be defined by the set of nodes in which there exists a path from 
each node to every other node. This set of definitions is illustrated in Figure 6. 
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II.2. Quality assessment and segmentation of latent fingerprint images 

A problem area of fundamental importance for latent fingerprint images is the segmentation of those 
images. As the term is used here, segmentation refers to the identification of image portions that contain 
friction ridge information.  Essentially, the problem can be viewed as one of distinguishing friction-ridge 
“foreground” from an arbitrary “background.” Traditional methods that are used to segment plain prints 
often fail when the background noise is highly structured, as is common in latent images.  Additional 
complexity arises when a single latent image contains multiple overlapping fingerprints.   
 
We have developed a novel approach to segmenting the fingerprint region from the background in a latent 
image.  Such a capability has the potential to reduce the amount of time spent by a latent examiner, and 
also may reduce the number of false minutiae that are extracted by automated systems by more accurately 
defining the fingerprint region. The segmentation method presented here is invariant to fingerprint 
orientation and, in some cases, can distinguish multiple prints appearing in an image.  The method is able 
to reduce the detected fingerprint area while also reducing the number of minutiae falsely labeled as part 
of the background. 
 
The proposed algorithm approaches the problem of latent fingerprint segmentation from the perspective 
of a human examiner by searching for regions in the image that have appearance and structure similar to 
typical friction ridges.  The algorithm generates an “ideal” ridge template and uses it to determine 
“goodness of fit” scores for local regions of the fingerprint image. Threshold levels can be set to specify 
different levels of quality in the image, and to distinguish foreground from background.  In addition, a 
Hough-based method is proposed for identifying straight lines in the image and correcting the errors 
introduced by the lines during ridge flow computation.  This is motivated by the fact that lines can fool 
automated systems because they exhibit properties similar to those of friction ridges and the error in ridge 
flow direction caused by the lines can affect the match score when utilized in latent print matching, such 
as in [26]. Figure 9 shows a workflow diagram outlining the proposed segmentation method aimed at 
detecting background regions with structured noise. This approach can detect any number of lines within 
the fingerprint image of any size or orientation, however; false positives do arise within the fingerprint 
region because of the continuous nature of the ridges.  Because of this, constraints on the minimum length 
of a line and maximum distance between segments must be met.  These values were determined from a 
trade-off between genuine and falsely detected lines from a set of test images. 
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the comparisons of fingerprints can be parallelized on a GPU, including 6-point and 9-point sets of 
minutiae.  
 
Single-triangle (3-point) comparisons on the GPU. All triangles from a reference fingerprint, within 
certain size restrictions, are compared with all triangles of the remaining fingerprints in the database. For 
the reference image, each triangle side must be between 10 and 150 pixels in length. (These size 
restrictions do not apply to the images being compared.) Two triangles are declared to match if the 
following criteria are met: 
 The perimeter of the test triangle is within 10% of the perimeter of the reference triangle; 

 the smallest side length of the test triangle is within 10% of the smallest side of the reference triangle; 

 both triangles have the same number of bifurcations, and therefore same number of ridge endings; 

 the minutiae types on the largest sides of both triangles are the same; 

 the minutiae types on the smallest sides of both triangles are the same; 

 the sum of minuta angles (theta values) from both triangles agree to within 10%; and 

 the smallest minutia angles from both triangles agree to within 10%. 

On a standard CPU, matching is performed sequentially by comparing a single triangle from the reference 
fingerprint with all triangles from the remaining fingerprints, one at a time. In contrast, a GPU can launch 
multiple threads; in our implementation, each thread performs 32 such comparisons in parallel, and the 
result is stored as a 32-bit integer. A two-dimensional grid containing blocks of threads is launched, 
depending upon the number of triplet combinations of minutiae in the reference and in the fingerprint to 
be compared. In our implementation, each block consists of 256 threads.  
 
In the first row of the grid, as illustrated in Figure 14, the first 256 triangles of the reference fingerprint 
are compared with all the triangles from the fingerprint being compared. In the second row, the next 256 
triangles are compared. In the last row of the grid, the last 256 triangles of the reference fingerprint will 
be compared. For each blue box in the figure, the numbers represent triangles from the reference 
fingerprint, and the numbers in each orange box represent triangles from one of the fingerprints in the 
database. In each block, 256 triangles from the reference fingerprint are compared with 32 triangles from 
a compared fingerprint. In the figure, z represents the total number of triplet combinations in the 
fingerprint being compared. 
 
Figure 15 illustrates the GPU block structure. The numbers in each blue box represent the triangle from a 
reference fingerprint, and the numbers in the orange box represent the triangles from the fingerprint being 
compared. In each thread, the reference triangle is compared with 32 triangles from the other fingerprint. 
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Figure 14: Grid layout on the GPU for 3-point matching. 
 
 

 
 

Figure 15: GPU block structure for 3-point matching. 
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Two-triangle (6-point) comparisons on the GPU.  From the results of single-triangle comparisons, all of 
the triangles from the reference fingerprint that represent good matches with some triangles in the 
database fingerprints are used in 2-triangle sets. The reference triangle pairs are chosen so that no 
minutiae are shared.  In addition to the single-triangle match criteria presented above, two triangles pairs 
are declared to match if the following criteria are met: 
 No minutiae are shared between the two triangles; 

 both triangle pairs have the same number of bifurcations, and therefore same number of ridge endings; 
and 

 the distance between the centroids of the two triangles from the test image is within 10% of the 
centroid separation distance of the two triangles from the reference image. 

For performing 2-triangle comparisons on the GPU, two arrays are formed such that the corresponding 
elements in both of the arrays are matched against triangles from the reference and compared fingerprint. 
Figure 16 illustrates the GPU block structure. Each box in the figure contains a pair of index values, with 
the first index representing a triangle from the reference image and the second index representing a 
triangle taken from a database image. In each block of the grid, each element from the reference and 
compared images is paired with all the other elements one by one and compared to find a match.  All 
combinations of pairs of triangles are compared. The value n in the figure represents the total number of 
single-triangle matches. The number of pairs that can be formed in each thread is limited by x = n/256.  
 

 
 

Figure 16: GPU block structure for 6-point (2-triangle) matching. 
 
Three-triangle (9-point) comparisons on the GPU. Similar to two-triangle comparisons, triples of 
triangles are formed from the reference and test images. For reasons of efficiency, a triple is formed by 
adding a single triangle to a triangle pair that was found during 2-triangle matching. The reference three-
triangle sets are chosen so that no minutiae are shared. In addition to the match criteria described above, 
two triangle triplets are declared to match if the following criteria are met: 
 No minutiae are shared between the three triangles; 

 both triangle triplets have the same number of bifurcations, and therefore same number of ridge 
endings; and 

 the distances between the centroids of triangle pairs from the test image agree with those from the 
reference image within 10%. 

In each block of the GPU kernel, all of the combinations with an element are formed and compared.  
Figure 17 provides a high-level illustration of the block structure for 3-triangle matching. Our GPU work 
is quite new, and has not yet been published. Experimental results are described briefly in Section III.4.  
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Figure 17: GPU block structure for 9-point (3-triangle) matching. 
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Table 2:  Localization accuracy results according to quality values assigned by NIST, using NIST SD27 
latent prints with ground truth minutiae. 

 
 

Quality assessment. This section presents results for quality assessment using FVC 2000 DB1 and NIST 
SD27.  To demonstrate improved quality assessment, we created three groups based on the mean minutia 
quality:  Good quality minutia sets (50 ܳതതതത  100), Bad (25 ܳതതതത ൏ 50), and Ugly (ܳതതതത ൏ 25ሻ.  The 
minutiae from NBIS MINDTCT are sorted using the quality score assigned, and then separately using the 
proposed quality score.  An improvement in quality assessment would be indicated by higher matching 
scores in the good quality group and lower matching scores in the Ugly quality group. 

 
Figure 20(a) shows an example output indicating the NBIS (red) and localized minutiae (blue). Part (b) of 
the figure shows a Receiver Operator Characteristic (ROC) curve indicating the False Accept Rate (FAR) 
vs. the True Accept Rate (TAR).  Using the Equal Error Rate (EER) as a threshold, the graph indicates an 
increase in TAR from 69.3% to 74.6% and a decrease in FAR from 30.6% to 25.4% when using the 
proposed localization method.  The net matching performance gain when using the localized minutiae is 
10.5% for the good quality group.   
 
Quality assessment results are shown in Figure 20 (c-d) and Table 3.  The measurements from Table 3 
come from the same test as Tables 1-2.  Here, the quality measures of minutiae that were found to 
correspond with ground truth minutiae are shown for the NBIS quality measure and our proposed quality 
measure.  The NBIS feature extractor finds many spurious minutiae, and we assume that higher quality 
measures should be found for those minutiae that have correspondences in the ground truth set. The 
results are shown for the three pre-determined quality groups and for the entire set.  For the set of latent 
prints in SD27, the proposed method improved the average minutia quality for all 258 latent images by 
14.62%.  The group showing the most improvement was the Ugly group, with a 17.15% increase over the 
NBIS quality measure.  From the plain fingerprint database, 98.8% of the prints have shown an 
improvement in quality assessment from the proposed method for minutiae that were successfully 
matched with the ground truth set, the largest individual improvement in quality assessment being 8.12%.  
From the latent database, 98.4% of the images have shown an improvement in quality assessment from 
the proposed method for minutiae that were successfully matched with the ground truth set, the largest 
individual improvement in quality assessment being 8.12%. 
 
Figure 20(c) shows an example output indicating the NBIS (red) and localized minutiae (blue).  In (d), an 
ROC curve is shown indicating improvement in quality assessment from the proposed method.  In this 
experiment, the NBIS minutia set was used to generate matching scores for both test sets.  However, the 
minutiae were automatically grouped based on the average minutia quality of the set using the NBIS 
quality measure and then again using the proposed method quality measure.  The graph indicates an 
increase in matching performance of the Good quality group generated by the proposed method and a 
decrease for the Bad and Ugly groups.  Using the EER as a threshold, the Good quality group TAR 
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 the sum of minutia-direction angles from the test triangle is within 10% of the sum of minutia-
direction angles from the reference triangle; 

 the smallest minutia-direction angle from the test triangle is within 10% of the smallest minutia-
direction angle from the test triangle;  

 the minutiae types on the largest sides of both triangles are the same; and 

 the minutiae types on the smallest sides of both triangles are the same. 

From Figure 25, it can be seen that the number of 3-point matches exceeds 100,000 for some images. The 
time taken for comparing each file was 120 ms, on average. The speed-up obtained by using GPUs when 
compared to sequential execution was 7.5. 
 
For Figure 26, an additional constraint was placed on the matching process. In addition to the constraints 
listed above,  
 each triangle is formed so that at least 2 minutiae belong to the same connected ridge component.  
 
With this added restriction, the maximum number of matches has been reduced to 17,311. For Figure 27, 
additional constraints were incorporated into the matching process. In addition to the above,  
 the sum of ridge counts between all triangle vertex pairs in the reference triangle must be the same as 

for the test triangle; 

 the minutia types must match for the minutia pair in the reference triangle that has the fewest ridge 
crossings and the minutia pair in the test triangle that has the fewest ridge crossings; and 

 the minutia types must match for the minutia pair in the reference triangle that has the most ridge 
crossings and the minutia pair in the test triangle that has the most ridge crossings. 

The maximum number of matches has been reduced to 6,078, a dramatic reduction from the first case 
described above. 
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Figure 25: Number of single-triangle matches per image, for 1000 images. Comparisons were performed 
using a single reference image. The horizontal axis is the image index; the vertical axis indicates the 
number of triangles within each database image that have matches in the reference image. 

 

Figure 26: Same as the previous figure, except that each triangle is now constrained to contain 2 or more 
minutiae from a single connected ridge component.  

 

Figure 27: Same as the previous figure, except that ridge counts are considered during triangle matching.  
 

1

10

100

1000

10000

100000

1000000

1 101 201 301 401 501 601 701 801 901

1

10

100

1000

10000

100000

1 101 201 301 401 501 601 701 801 901

1

10

100

1000

10000

1 101 201 301 401 501 601 701 801 901

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



 

 37

Figures 28 and 29 illustrate the effect of extending the matching process from single triangles to 2-
triangle sets and 3-triangle sets, respectively. Although the potential exists for more matches to be found, 
because the number of minutiae is larger, significantly more cases were found for which no matches to 
the reference image are present. By definition, such cases are rare, relative to this particular data set. 
 
 

 

Figure 28: Number of two-triangle matches per image, for 1000 images. Comparisons were performed 
using a single reference image. The horizontal axis is the image index; the vertical axis indicates the 
number of cases within each database image that have matches in the reference image.  
 

 

Figure 29:  Number of three-triangle matches per image, for 1000 images. Comparisons were performed 
using a single reference image. The horizontal axis is the image index; the vertical axis indicates the 
number of cases within each database image that have matches in the reference image. 
 

1

10

100

1000

10000

100000

1000000

1 101 201 301 401 501 601 701 801 901

1

10

100

1000

10000

100000

1000000

10000000

1 101 201 301 401 501 601 701 801 901

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



 

 38

The previous figures presented statistics on an image-to-image basis. In another set of experiments, we 
selected triplet-based features from a reference image, and then searched for matches to those features 
within other images from the FBI database. Triangle side lengths were constrained to be between 10 and 
150 pixels in length. The reference image contained 2,560 triangles, from which 3,275,520 six-point (2-
triangle) features were formed. These were matched against 3,500 images of the database. (Time 
constraints did not permit an exhaustive search for this report, although work is in progress to complete 
the search using all remaining images from the database.) 

Figure 30 shows the number of matches that were found for 1,048,576 of these six-point features. It can 
be seen that some of the 6-point combinations have very few matches. Although not indicated in the 
figure, several 6-point features from the reference image had no matches at all within these 3,500 images. 

 

 

Figure 30: Number of matches per 6-point feature from a reference image. The horizontal axis is the 
index to a particular feature in the reference image; the vertical axis indicates the number of matches that 
were found in 3,500 images of the FBI database. 
 

In summary, during this second investigation of distinctive-feature characterization we found several 6-
point and 9-point features that are rare among 3,500 images of the FBI database. It was evident that some 
6-point and 9-point features could be extremely rare, hence one needs not consider significantly higher 
numbers of minutiae to find rare features.  As described in this section, ridge counts played an important 
role, and the features were constrained so that at least 2 minutiae from each triangle must come from the 
same connected component. Only high-quality minutiae were considered in this experiment, in order to 
reduce the likelihood of false rare features. Time constraints did not permit a more thorough 
characterization, such as matching against the full database, although that work will continue. 

III.2. Quality assessment and segmentation of latent fingerprint images 

The proposed segmentation algorithm, as described in Section II.2, was tested using a database of 258 
latent fingerprint images [46]. For this database, ground-truth minutiae have been identified manually by 
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experienced latent examiners.  The images also have been marked into three global quality scores, named 
Good, Bad, and Ugly as used earlier in this report.  To test the proposed algorithm, we tabulated the 
number of true minutiae that were labeled by the segmentation routine as background. We also measured 
the detected fingerprint area that resulted from the proposed method, and compared it with the results 
from a typical segmentation algorithm.  The ability to reduce the fingerprint area while also reducing the 
number of missed true minutiae shows the improved precision of the algorithm at fingerprint 
segmentation.  When the fingerprint area is large and the number of missed minutiae is high, the 
segmentation has incorrectly labeled the background as foreground and vice versa.   
 
In Figure 31(a-b), two latent fingerprint images from the database are shown.  In (c-d), the detected 
fingerprint areas from the NBIS algorithm are shown [45], which uses a traditional method for 
segmentation.  In (e-f), the segmentation from the proposed algorithm (without line removal) is shown.  
In (c-f), the background is indicated by the blacked out region.  The dashed white outlines were drawn 
manually in (a-b), and are replicated in the other images to provide visual references for comparison. The 
figure demonstrates clearly that the detected fingerprint regions from the proposed segmentation 
algorithm are much smaller and more accurate than those of the previous method.  From this figure, the 
ability of the proposed algorithm to reduce the searchable fingerprint area while improving accuracy can 
be seen. 
 
The results shown in Table 5 are from a total of 5,303 true minutiae from the set of 258 latent images.  
The table shows the fingerprint area and percentage of true minutiae that were missed (determined to be 
in the background region) for the NBIS quality map and for the proposed quality map.  The fingerprint 
area is a percentage of the entire image region.  The goal was to reduce the fingerprint area while 
reducing or keeping the number of true minutiae labeled as background the same.  P1 refers to the 
algorithm where thresholds were empirically set to have the same fingerprint area as the NBIS method.  
The results show the ability to reduce the percentage of true minutiae labeled as background from 1.41% 
to 0.29% when the fingerprint area is held constant.  P2 shows the algorithm’s ability to reduce the 
fingerprint area when the false negative rate is held constant.  Here, the fingerprint area was reduced from 
60.7% to 33.6% of the original image.  Finally, P3 shows a scenario where both fingerprint area and 
missed true minutiae can be reduced by the proposed algorithm.  These results show the ability of this 
approach to increase the accuracy of the segmented fingerprint area in latent images.  
 
Figure 32 shows Receiver Operating Characteristic (ROC) curves for the proposed and traditional 
segmentation methods, using the same database of latent prints. The manually extracted minutiae 
provided with the data set were used for measuring match scores, and these results do not measure 
performance of automated minutia extraction methods.  However, a minutia was removed if it was found 
to be in the background of the segmentation map for the respective method, indicating that regardless of 
the feature extraction method, the minutia would have been missed due to being labeled as background. 
The plot shows the True Accept Rate (TAR) vs. False Accept Rate (FAR) for both methods.  The Equal 
Error Rate (EER) is shown for reference to indicate where the FAR equals the TAR.  The closer the ROC 
curve is to the upper left of the graph, the better performance the method exhibits.  Here, the traditional 
method produced a FAR of 33.8% and TAR of 66.2%.  The proposed method produced a FAR of 32% 
and TAR of 68%.  The net performance gain, when taking into account the gain in TAR and drop in FAR, 
was 3.6%. 
 
Results from automatic line detection using the Hough-based approach can be seen in Figure 33 for two 
cases from SD27.  In (a), two latent fingerprint images are shown on a structured background containing 
dark lines and text.  The regions in the ridge flow map containing errors are indicated in (b), and (c) 
shows the detected lines from the image. Finally, (d) shows the corrected ridge flow direction in the 
region of interest. A size filter was applied to the detected lines, to remove those that were too small to be 
retained as line artifacts. The green lines indicate the final lines that were detected, and the red lines 
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III.3. Distortion modeling and creation of a synthetic image database 

We have generated a synthetic latent fingerprint database following the procedures outlined in Section 
II.3. To avoid issues related to privacy, we used the public domain fingerprint image database, NIST 
Special Database 27, as our source for initial fingerprint images. From the 258 good-quality rolled prints 
in SD27, our system automatically generated a database of 2,360 images containing a total of 4,725 latent 
fingerprint impressions. This database will be made available to researchers, practitioners, and others who 
are interested in latent print analysis. 
 
The full size of the database is 7.8 gigabytes. This large size results from the realistic sizes of the 
impressions and backgrounds, which were chosen to match the standard resolution of fingerprint images, 
500 dpi. Images in the database represent a surface area ranging from approximately 1 inch × 1 inch up to 
3.5 inches × 5 inches. The image files are stored using the common TIFF standard with lossless 
compression. 
 
A few example images from this database are shown in Figure 34. Creation of a new image for our 
database began with a real fingerprint image taken from SD27. That image was distorted by our system as 
described in II.3, to become part of the “foreground” of the new image. Our software selected a 
“background” image from a collection of copyright-free images, and applied distortion separately to the 
background. The foreground was then merged with the background to create a realistic latent fingerprint 
image. 
 
Parameters required by the distortion methods were selected empirically, with the goal of ensuring that 
the resulting synthetic database would have statistics that are close to those of the latent prints in the 
SD27 database. Figure 35 contains box-and-whisker plots that show very similar distributions of minutia 
counts in both latent databases. 
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Table 6: Results of parallelizing single-triangle and two-triangle comparisons on a GPU. Each row 
represents a single fingerprint file. The first columns contain a file identifier, number of minutiae in that 
file, and number of minutia triples. The columns for Ts list the amount of time required to perform single-
triangle matches,  Tp is the time for two-triangle matches, Speedups is the improvement for single-triangle 
matches, and Speedupp is the improvement for two-triangle matches. Ts, and  Tp  are in milliseconds. 

   CPU GPU   

File 
No. 
min. 

No. of 
triplets 

(triangles) 

Ts 

(ms) 
Tp 

(ms) 
Ts 

(ms) 
Tp 

(ms) 

Grid 
size 

single 

Grid size 
pairs 

Speed
-ups 

Speed-
upp 

Ref. file 33 5456      
File 2 38 8436 190 4770 60 760 22x64 129x129 3.1 6.2
File 3 29 3654 80 350 20 50 22x115 67x66 4.0 7.0
File 4 17 680 10 70 10 10 22x22 45x45 1.0 7.0
File 5 41 10660 260 4580 30 710 22x334 128x128 8.7 6.5
File 6 33 5456 140 2550 20 360 22x171 111x111 7.0 7.1
File 7 51 20825 550 33310 60 5570 22x651 209x209 9.1 6.0
File 8 44 13244 280 22210 30 3830 22x414 192x192 9.3 5.7
File 9 23 1771 50 270 10 40 22x56 63x63 5.0 6.8
File 10 23 1771 50 140 10 20 22x56 52x51 5.0 7.0
File 11 32 4960 120 350 10 50 22x156 66x66 12.0 7.0
File 12 25 2300 60 580 10 80 22x72 76x76 6.0 7.3
File 13 22 1540 40 150 10 20 22x49 54x53 4.0 7.5
File 14 28 3276 90 650 10 90 22x103 78x78 9.0 7.2
File 15 34 5984 160 2870 20 450 22x188 116x115 8.0 6.5
File 16 42 11480 320 13740 30 2390 22x359 171x170 10.7 5.7
File 17 43 12341 310 9580 30 1550 22x386 154x153 10.3 6.1
File 18 50 19600 440 7880 60 1250 22x613 146x145 7.3 6.3
File 19 42 11480 310 3230 30 500 22x359 117x117 10.3 6.5
File 20 34 5984 140 1750 10 230 22x188 101x101 14.0 7.6
File 21 39 9139 240 3540 20 530 22x286 119x119 12.0 6.6
File 22 22 1540 40 70 10 10 22x49 43x42 4.0 7.0
File 23 49 18424 410 36330 40 6740 22x576 216x215 10.3 5.4
File 24 53 23426 570 40630 60 7750 22x733 221x221 9.5 5.2
File 25 47 16215 360 9190 50 1480 22x507 151x151 7.2 6.2

Average Speedup 7.6 6.5
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III.5. Summary 

We have addressed the problem of sufficiency through several related research thrusts. In the area of 
feature extraction we developed new methods of grayscale image analysis for detecting ridges and for 
improving the localization (and therefore the quality) of ridge endings and bifurcations. From the point of 
view of sufficiency for latent prints, grayscale analysis is important because inherently more information 
is available than with traditional approaches that are limited to binary analysis. We have validated our 
contribution using public-domain as well as commercial software products that perform feature detection 
and matching. 
 
Another research thrust related to feature extraction has been the evaluation of features, particularly 
“extended” features based on minutia triplets, for their suitability in identification/exclusion tasks. We 
developed a methodology for evaluating triplet-based distributions of minutiae together with ridge 
connectivity and ridge crossings. (These minutiae and ridges were detected using the techniques described 
in the previous paragraph.) We followed the principle that features carry more discriminating power if 
they are statistically rare. We tested the methodology first with a small set of 100 fingerprint images, and 
later with a much larger image database. Time limitations did not permit an exhaustive evaluation with 
the larger database, but did lead to features based on 6-point minutia sets using 3500 fingerprint images.  
 
Another research thrust directly addressed the problem of quality-based image segmentation of latent 
prints. Building on our investigation of grayscale image analysis, we developed an approach for assigning 
quality scores to detected ridges, and from those scores to estimate the extent of the foreground region of 
the image. An unusual aspect of our approach has been to incorporate a line-detection algorithm directly 
into the segmentation process. This was motivated by examples in the SD27 database, for which many of 
the image backgrounds contain straight-line artifacts. Many existing systems are “fooled” by these lines 
because they closely resemble friction ridges. We demonstrated that our system can detect many of these 
lines in advance, and can use that information to improve the accuracy of the computed ridge flow, which 
in turn leads to improved image segmentation.  
 
Distortion modeling represents another thrust of our research. We investigated fingerprint image 
distortion in part because of our stated project goal of synthesizing a database of realistic latent images. 
The resulting database contains more than 2000 images with more than 4700 fingerprint impressions on 
realistic backgrounds. This database will be made available to researchers and practitioners who are 
interested in latent print analysis.  
 
Finally, high-speed implementation has been another research thrust. Our GPU-based implementation has 
been instrumental in characterizing the triplet-based features described above. The motivation for this 
aspect of the work has not been to improve existing techniques, but instead to assist in completing our 
investigation in a timely fashion. 
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IV. Conclusions 

IV.1. Discussion of findings 

The results obtained through our research have been noteworthy.  First, we have developed a novel 
hierarchical, triplet-based representation among minutiae and associated friction ridges.  Such a 
representation offers a unique and powerful way for fingerprint search and comparison.  In addition, it 
allows for the mining and detection of unique and rare features that can be extremely useful when 
estimating the statistical likelihood of a match with a given print.  For instance, we have identified 
statistically rare features among various prints in a database.  Likewise, given a feature, our method also 
allows for assessing if the feature would be considered rare. We have begun to parallelize the algorithms 
on low-cost general purpose graphics processing units (GPUs), and significant speedups have been 
achieved. By parallelizing the algorithms, we believe much larger databases can be handled. We also have 
been successful in developing techniques to enhance the accuracy of extraction of ridges and minutia 
from a print, using novel filtering techniques.  Finally, we have successfully created databases of 
synthetic fingerprints.  These achievements are all aligned with our goals and objectives. 

IV.2. Implications for policy and practice 

The interpretation of friction ridge pattern evidence is based primarily on experience, and a large 
component of the process is subjective. In addition, training is accomplished in-house and varies 
substantially from laboratory to laboratory. There is no nationwide standardized education and training 
curriculum. The differences in training and experience can result in quite varied interpretations of the 
same evidence by different practitioners, and such differences may impact inculpation and exculpation of 
suspects and more importantly impinge on the tenet of the presumption of innocence. Confounding the 
interpretation is a lack of documentation regarding validation of the processes. Validation is essential for 
determining the limitations of a process or methodology so that practitioners have data to establish 
guidelines to not exceed the bounds of the system when subjectively interpreting evidence. The 
interpretation process also is problematic because the quality of the evidence varies substantially, ranging 
from highly informative and resolved to partial, smudged, and distorted. Lastly, the quality and quantity 
criteria for a “print” to meet a sufficiency threshold for interpretation and subsequently for an 
identification are not defined. Although acceptance of latent print evidence has been accepted in the 
Courts, legal admissibility is a poor criterion for scientific quality. We all must accept that there are 
inherent limitations with the current process that need to be improved. These gaps in the system must be 
addressed. 
 
The studies herein address some aspects of image quality problems related to identifiable Level 1, 2, or 3 
details and how such data can be utilized to support the subjective interpretations that to date may not 
have been validated sufficiently. Moreover, the uncertainty and possibility of error that potentially may 
contribute to some practitioners actions to “push the envelope” may soon be able to be quantified so fact 
finders and triers of fact can be better informed on the vagaries, so justice may be better served.  
 
From a policy perspective, the work reported herein lays a foundation for further development so that 
sufficiency metric(s) can be developed. However, far more effort is required for development of a more 
objective based support system for interpretation of friction ridge detail. Although not yet complete, the 
data herein should be considered as part of a more comprehensive training program to promote 
understanding, increasing accuracy and reliability, and more uniform assessment of fingerprint pattern 
analysis and practice. 

IV.3. Implications for further research 

The early research performed here lays a robust foundation for the transition to late-stage research and 
then development, on a path to testing and validation and transition to a useable “tool kit” by 
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practitioners. If this were to occur, the first step in this process could be to apply the emerging techniques 
to the large data set of digitized fingerprint images of varying quality that we acquired from the FBI 
(118,000 anonymized images from 2600 individuals, classified as to quality by the FBI as “Good, Bad 
and Ugly”), and characterize and measure the performance of our methods and modify or improve them.  
The results from this effort would be published. The next step would be convert our concepts into 
prototype methods and involve forensic fingerprint examiners with varying degrees of expertise and 
experience in rigorously structured experimentation with the methods following training on them. This 
effort would allow us to determine whether or not these techniques could be transitioned to use. This, too, 
would be published. From these two efforts, an initial protocol could be constructed and subjected to 
extensive and rigorous forensic validation, including by others. 
 
Our novel research approach deserves also consideration for extension to other pattern evidence analysis 
problem sets, most of which require a determination of sufficiency as a crucial step. In fact, though the 
formal step to determine sufficiency through the ACE-V process is most often used in conjunction with 
fingerprint analysis, it applies to the human forensic comparative examination of pattern evidence such as 
shoeprint, tire tread, documents, and projectiles (e.g., bullets). Throughout the history of these forensic 
pattern disciplines, a subjective determination of sufficiency has occurred and persists to this day. If our 
approach was extended through additional research pursuits, a universal approach to providing a 
quantitative basis for determining and communicating sufficiency might be achievable. 
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VI. Dissemination of research findings 
Several publications have resulted directly from this work, and they are listed below. In addition, an 
internet site is currently being prepared to disseminate information related to this project. This site will 
contain links to the technical publications, and will provide access to databases that are being created as 
part of this project. 

VI.1. Publications resulting from this project 

The following publications have resulted from research conducted as part of this project. 
 
 K. E. Hoyle, N. J. Short, M. S. Hsiao, A. L. Abbott, and E. A. Fox, “Minutiae + Friction Ridges = 

Triplet-Based Features for Determining Sufficiency in Fingerprints,” Proceedings: 4th International 
Conference on Imaging for Crime Detection and Prevention (ICDP 2011),  London, UK, Nov. 2011. 
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Template Correlation,” Proceedings: 4th International Conference on Imaging for Crime Detection 
and Prevention (ICDP 2011), London, UK, Nov. 2011. 
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Conference on Biometrics (IJCB 2011), Arlington, VA, Oct. 2011. 
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 N. P. Kozievitch, R. da Silva Torres, S. H. Park, E. A. Fox, N. J. Short, A. L. Abbott, S. Misra, and M. 
S. Hsiao, “Rethinking Fingerprint Evidence through Integration of Very Large Digital Libraries," 
Proceedings:  Third Workshop on Very Large Digital Libraries (VLDL2010), in conjunction with the 
14th European Conference on Research and Advanced Technology for Digital Libraries (ECDL2010), 
Glasgow, Scotland, Sept. 2010, 8 pages.  

VI.2. Invited presentations 

The investigators have delivered the following invited presentations that are related to this project. 
 
 M. S. Hsiao, A. L. Abbott, E. A. Fox, R. Murch, B. Budowle, N. J. Short, S. Misra, N. P. Kozievitch, 

and S. H. Park, “Toward a Quantitative Basis for Sufficiency of Friction Ridge Pattern Detail,” oral 
presentation at Impression and Pattern Evidence Symposium, Clearwater Beach, FL, Aug. 2010.  
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 L. Abbott, M. S. Hsiao, E. A. Fox, R. Murch, B. Budowle, N. J. Short, S. Misra, N. P. Kozievitch, 
and S. H. Park, “Development of a Quantitative Basis for Sufficiency in Friction Ridge Pattern Detail,” 
presentation for NIJ Panel on Impression Evidence, NIJ Conference 2010, National Institute of 
Justice, Arlington, VA, June 14, 2010. 
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VI.3. Theses and dissertations 

One M.S. thesis has been completed that is directly related to this project: 
 
 Kevin E. Hoyle, "Minutiae triplet-based features with extended ridge information for determining 

sufficiency in fingerprints," M.S. Thesis, Bradley Department of Electrical and Computer 
Engineering, Virginia Tech, July 2011. (Available at http://addison.vt.edu/record=b2965528~S1.) 

 
In addition, a  Ph.D. dissertation and a second M.S. thesis are in preparation.  These are expected to be 
completed within this calendar year. 

VI.4. Technical reports 
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Localization and Quality Assessment using Adaptable Templates," CESCA Technical Report, 
CESCA-2011-002, Bradley Dept. of Electrical and Computer Engineering, Virginia Tech, June 2, 
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 K. E. Hoyle, N. J. Short, M. S. Hsiao, A. L. Abbott, and E. A. Fox, "Minutiae + Friction Ridges = 
Triplet-Based Features for Determining Sufficiency in Fingerprints," CESCA Technical Report, 
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