See also the instructional videos on "Firearms Evidence"
During the investigation of firearm-related incidents, gunshot residues (GSR) can be collected on the scene and individuals (e.g., shooters or bystanders). Their analysis can give valuable information for the reconstruction of the events. Since GSR collection on persons of interest generally occurs a few minutes to hours after discharge, knowledge is needed to understand how organic (O), and inorganic (I) residues are transferred and persist. In this research, the quantities of OGSR and IGSR were assessed on the right and left hands, forearms, face, and nostrils of four shooters. Specimens were collected immediately before the discharge (shooter’s blank specimens) and shortly after (30 min) using carbon adhesive stubs. Organic compounds were first extracted from the collection device and analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC- MS/MS). Subsequently, IGSR particles were detected on the same stub using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDS). Shooter’s blank specimen analysis revealed background contamination of both O and IGSR in the shooter’s environment, predominantly attributed to the presence of an indoor shooting range. However, the background quantities generally remained below the associated 30-minute specimen. Thirty minutes after a discharge, higher quantities were generally detected on the shooter’s right and left hands than on other collection regions for both GSR types. Forearms and face emerged as interesting collection alternatives, especially in cases where a person of interest may have washed their hands in the interval between the discharge and collection. In contrast, very low amounts of GSR were detected in the nostrils. Furthermore, the results indicated that OGSR and IGSR have different transfer and persistence mechanisms.
© 2024 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License which permits unrestricted noncommercial use, distribution, and reproduction, provided the original work is properly cited and not changed in any way.