Three-dimensional visualization of gunshot cavities in ballistic gelatine with computed tomography

A forensic ballistics case study


Creative Commons License
Petteri Oura, Mikael Brix, Eveliina Lammentausta, Timo Liimatainen, Juha Kiljunen, Alina Junno, Jaakko Niinimaki, Juho-Antti Junno

   See also the instructional videos on "Firearms Evidence"

ABSTRACT

Three-dimensional (3D) imaging, primarily computed tomography (CT), has proven valuable in the documentation and analysis of gunshot injuries. Explicit visualization of findings may play a pivotal role in judicial settings. This forensic ballistics case study aimed to examine the potential of CT-based 3D reconstruction to digitally visualize gunshot cavities in ballistic gelatine. Three .30 caliber bullets of different types (full metal jacket, soft point, and expanding monolithic) were fired into standardized blocks of 10% ballistic gelatine. The blocks underwent CT scanning with clinical equipment. Gelatine and air were segmented from the CT data using an open-source software. 3D reconstruction views of the segmented gelatine and air components were created. The gunshot cavities were clearly observed in both gelatine and air segmentation. The differences in cavitation between bullet types were evident in both reconstruction approaches, although gelatine segmentation produced higher resolution of small details. The obvious benefit of digital reconstruction was the ability to freely tilt and rotate the 3D images, with the possibility of taking measurements manually or automatically from any plane. Moreover, all the data can be stored for future analysis. This study introduces a preliminary method for digital visualization and documentation of gunshot cavitation in ballistic gelatine, to be fine-tuned and implemented for research purposes and routine practice in forensic institutions.

 Earn a Degree in Crime Scene Investigation, Forensic Science, Computer Forensics or Forensic Psychology

Read the report:




Receive our free monthly newsletter and/or job posting alerts Click to sign up

Creative Commons License © 2024 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License which permits unrestricted noncommercial use, distribution, and reproduction, provided the original work is properly cited and not changed in any way.